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1. Introduction

The wish to protect information from unauthorized listeners has driven humans from
early mankind to invent all sorts of cryptographic schemes and encryption algorithms.
The modern computer age has made the security need as important and the difficulty
of breaking classical algorithm based cryptography as easy as never. In the last decades
of the 20th century S. Wiesner, H. Bennett, G. Brassard and A. Ekert [73, 12, 13, 32]
proposed cryptography schemes which security relies on the laws of quantum mechanics.
An intruder trying to listen in will always be detected. Because these schemes establish
identical secret keys in two remote locations they have since become known under the
term Quantum Key Distribution (QKD). QKD has been experimentally performed using
all sorts of systems, applying various protocols, over distances of up to 120 km [41, 63,
61, 42]. These experiments are performed in the lab as well as in real-life environments,
such as the nightly sky of a metropolitan city [55, 47]. Even a secure bank transfer has
been performed [53] and commercial plug-and-play systems are already available, which
underlines the need and usefulness of QKD systems.
All experiments performed so far were based on two-dimensional quantum systems
(qubits). However, the usage of higher-dimensional systems offers advantages such as
an increased allowance of noise in order to keep the key distribution secure and an
increased information content of each system. In this thesis we will investigate higher-
dimensional systems, in particular qutrits, encoded in the orbital angular momentum of
photons. Two different types of QKD protocols are considered, namely the BB84 and
the Ekert protocol. An approach using computer generated phase holograms to control
the orbital angular momentum is discussed and numerical simulations are performed.
Finally a quantum key distribution experiment is performed, where two separate keys
are produced using a modified Ekert scheme.
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2. Theoretical Aspects

2.1. Concepts of Quantum Information

The unit of information, the bit, is a concept that has become a part of everyday life.
It is the fundamental unit of classical information. Almost all modern applications like
computers, digital music, etc. work with bits of information. Such a bit can either have
the value 0 or 1 and with a string of bits, like a byte (which is 8 bits), any information can
be encoded. In quantum theory the basic unit of information is called a qubit (quantum
bit). Any kind of two-level quantum system is a qubit. In contrast to the classical bit a
qubit has no definite value but rather is a superposition of two values, i.e.

|ψ〉 = α|0〉 + β|1〉 (2.1)

where the |ψ〉, |0〉 and |1〉 are ket-vectors in a two-dimensional complex vector-space,
Hilbert space H2. α and β are the respective complex amplitudes of |0〉 and |1〉, with
|α|2 + |β|2 = 1. It is important to note, that in (2.1) |0〉 and |1〉 are orthogonal states,
just like the two classical states of a bit 0 and 1 are mutually exclusive, i.e. their inner
product1 is 〈0|1〉 = 0. They span a complete orthonormal (they are normalized and
orthogonal one to another) basis A on the two-dimensional Hilbert space. The same
state can be written in any different complete orthonormal basis. A state |ψ〉, that can
be represented by a sum of basis vectors, like (2.1) is called a pure state. If such a
description is not possible and the state is a statistical mixture of pure states, then it is
called a mixed state.
A measurement on a quantum state is represented by an operator Â on the same Hilbert
space. Such an operator can be expanded by its eigenstates, e.g. |0〉 and |1〉. If a mea-
surement is performed, the state is projected according to its amplitudes2 α and β,
e.g.

Â|ψ〉 = |1〉〈1|ψ〉 = β|1〉. (2.2)

After a measurement has been performed the initial state remains in the projected state,
with an updated amplitude (in the above case β = 1). Every measurement ”disturbs”

1〈 . | . 〉 is the inner product of a ket-vector | . 〉 with a vector from its dual space, the bra-vector 〈 . |
(〈 . |� = | . 〉). It gives the overlap between the two vectors and is 0 if they are not overlapping, i.e.
orthogonal, and 1 if they are equal.

2The absolute squares of the amplitudes α and β determine the probability of finding the system in
state |0〉 or |1〉, respectively. In quantum theory this randomness is a fundamental feature of the
theory.
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2. Theoretical Aspects

the system and changes the amplitudes of the eigenstates, e.g. the measurement B̂ in a
different basis B, with |±〉 = 1√

2
[ |0〉 ± |1〉 ] ∈ B, would be:

B̂|ψ〉 = |+〉〈+|ψ〉 =
α+ β√

2
|+〉. (2.3)

Note, if α = β = 1√
2

the probability of measuring |+〉 is equal to 1. Further, A and B

are said to be mutually conjugated3, as the inner product of any of their basis vectors
is 〈0|+〉 = 1√

2
.

The generalization of superposition to larger systems is entanglement [59]. Generally any
quantum system with several degrees of freedom (e.g. multi-particles4) can be entangled.
The best known example is a maximally entangled two particle system:

|ψ−〉 =
1√
2

[ |0〉1 ⊗ |1〉2 − |1〉1 ⊗ |0〉2 ] , (2.4)

where the states with subscript 1 are system 1 and subscript 2 stands for system 2. The
important difference to a non-entangled state is, that the states of two systems cannot be
factorized. Hence, it is not possible to ascribe any state-vector to the individual systems,
but only to the joint system — nothing can be said about one of the subsystems of
a maximally entangled state, only about both jointly. Entanglement implies that the
two systems, if measured, are always perfectly correlated, i.e. if system 1 is measured
and projected on state |0〉, then system 2 is projected into state |1〉 and viceversa. In
principle there is no limitations on the entanglement, i.e. two entangled systems can be
arbitrarily spatially and temporarily separated. Entanglement has been demonstrated in
many experiments and so far no deviations from quantum mechanical predictions have
been observed [4, 71, 6]. State (2.4) is one of the so-called Bell states, which are defined
as the four maximally entangled qubit states:

|ψ−〉 =
1√
2

[ |0〉1 ⊗ |1〉2 − |1〉1 ⊗ |0〉2 ] ,

|ψ+〉 =
1√
2

[ |0〉1 ⊗ |1〉2 + |1〉1 ⊗ |0〉2 ] ,

|φ−〉 =
1√
2

[ |0〉1 ⊗ |0〉2 − |1〉1 ⊗ |1〉2 ] ,

|φ+〉 =
1√
2

[ |0〉1 ⊗ |0〉2 + |1〉1 ⊗ |1〉2 ] . (2.5)

3They are also called mutually unbiased bases (MUBs). For a general d-dimensional Hilbert space Hd

the condition for MUB bases is 〈ϕn|ψm〉 = 1
√

d
.

4We will now talk about particles instead of system, without any loss of generality, as it is a more
illustrative concept.
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2. Theoretical Aspects

In contrast to the ideal Bell states there are non-maximally entangled Bell states, where
the amplitudes are not uniform, i.e.

|ψ〉 =
1

√

1 + γ2

[

|0〉1 ⊗ |1〉2 + γeiϕ|1〉1 ⊗ |0〉2
]

. (2.6)

It is easy to see, that γ = 1 recovers the four Bell states and γ = 0 is a completely
separable state and therefore not entangled.
Two measurements Â and B̂ are said to be non-commuting if their commutator does
not vanish, i.e.

[Â, B̂] = Â · B̂ − B̂ · Â 6= 0 (2.7)

Any non-commuting measurements (or observables) cannot be measured simultaneously
with arbitrary precision. For example, the observables momentum P̂ and position X̂ do
not commute and therefore the momentum and the position of a particle can only be
determined at the same time up to a lower bound, which is the so-called Heisenberg
uncertainty principle, given by

∆P̂ · ∆X̂ ≥ ~

2
. (2.8)

The uncertainty ∆Â of an observable Â is defined as
(

∆Â
)2

= 〈Â2〉 − 〈Â〉2, (2.9)

where 〈 . 〉 = 〈ψ| . |ψ〉 is the operator mean for state |ψ〉. Here ~ is the Planck constant5

h divided by 2π.

2.1.1. The No-Cloning Theorem

In 1982 W. K. Wootters and W. H. Zurek [75] pointed out, that an arbitrary quantum
state, due to the linearity of quantum theory, could not be cloned. That means, that
no perfect copy of a quantum state can be made, without destroying the original state.
This stands in contrast to the classical intuition, where an arbitrary (and even unknown)
state can be copied as many times as necessary. If |ψ〉i is the original state, |β〉c the blank
state (like a blank sheet of paper, on which the copy will be made) and an operator Ĉ
that is the quantum copy machine, then, making a copy of |ψ〉i means

Ĉ (|ψ〉i ⊗ |β〉c) = |ψ〉i ⊗ |ψ〉c. (2.10)

For the special cases, where |ψ〉i is in state (2.1), with amplitudes α = 1, β = 0 and
α = 0, β = 1, the copy machine has to give the following results:

Ĉ (|0〉i ⊗ |β〉c) = |0〉i ⊗ |0〉c,

Ĉ (|1〉i ⊗ |β〉c) = |1〉i ⊗ |1〉c. (2.11)

5h = 6.626 · 10−34 J·s
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2. Theoretical Aspects

If |ψ〉i now is a general superposition, where α and β are unknown, then a copy process
yields

Ĉ (|ψ〉i ⊗ |β〉c) = Ĉ [(α|0〉i + β|1〉i) ⊗ |β〉c]

= α|0〉i ⊗ |0〉c + β|1〉i ⊗ |1〉c, (2.12)

where we used (2.11). This result stands in contrast to the desired result of a perfect
copy scheme:

Ĉ (|ψ〉i ⊗ |β〉c) = |ψ〉i ⊗ |ψ〉c (2.13)

= (α|0〉i + β|1〉i) ⊗ (α|0〉c + β|1〉c)

= α2|0〉i ⊗ |0〉c + αβ|0〉i ⊗ |1〉c + βα|1〉i ⊗ |0〉c + β2|1〉i ⊗ |1〉c.

It is thus impossible to find a universal quantum copy machine Ĉ, that makes a perfect
copy of any arbitrary, unknown quantum state. However, imperfect copies are very well
possible (for optimal cloning devices see [60, 72]). The no-cloning theorem is vital to the
security of any quantum key distribution protocol, as will be shown in chapter 3.4.

2.2. Local Realism in Quantum Theory

In their famous 1935 Gedankenexperiment Einstein, Podolsky and Rosen (EPR) [31],
based on the above concepts, argued that quantum theory could not give a complete
description of physical reality. That is because the wave-function does not tell us with
probability 1 the particle’s position if we measure it. Einstein especially disliked this
randomness as a basic principle of quantum mechanics and once said ”Gott würfelt
nicht!”6. In the following years a vivid discussion between Einstein, Bohr and many oth-
ers arose. Some years later, attempts were made to ”complete” quantum theory. People
were looking for a deeper theory underlying quantum mechanics, which would explain
the seemingly randomness by parameters in the new theory, which are not included in
quantum theory (therefore they are normally called hidden parameters) and only appear
as probability distributions [15, 16]. On the other hand various arguments were found
trying to prove the EPR argument wrong [17, 69, 59]. Despite a lot of arguing neither
side could objectively decide the dispute. Not until 1964, when John Bell discovered his
famous Bell inequality [10]. Bell found an inequality that would be violated by quantum
mechanical predictions for certain measurements, while satisfied by all local realistic
theories that were mostly envisioned for a completion of quantum theory by EPR. Here
locality is the impossibility of action between space-like separated regions, while realism
in the words of EPR is ”If, without in any way disturbing a system, we can predict with
certainty (i.e., with probability equal to unity) the value of a physical quantity, then there
exists an element of physical reality corresponding to this physical quantity.”.

6”God does not play dice!”
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2. Theoretical Aspects

Figure 2.1.: Schematic representation of a source used for testing a CHSH inequality.
A pair of entangled spin-1/2 particles is emitted and their spins are measured in Stern-
Gerlach apparatuses — inhomogeneous magnetic fields, in which particles with different
spins are deflected in different directions. The measurement settings ~a1,~a2 and ~b1,~b2
are denoted as a and b, respectively. For spin-1/2 particles, the settings correspond to
different orientations of the magnetic fields in the Stern-Gerlach apparatus. This case is
in complete analogy to photons entangled in their polarization, where the analyzers are
polarizers.

In its more refined version of Clauser, Horne, Shimony and Holt (CHSH) [26] the deriva-
tion of the Bell inequality is as follows: a pair of entangled particles propagates towards
two space-like separated labs, operated by observers A and B (throughout this thesis
A will be a female observer, while B is male). Each of them can set her/his apparatus

freely to one of two states, which are described by vectors ~a1,~a2 and ~b1,~b2, respectively
for A and B. The results of these measurements are dichotomic, e.g. horizontal or verti-
cal polarization for photons or spin up or down for spin-1/2 particles. To each result a
unique value is assigned, being either +1 or −1.
In any local realistic theory describing the possible measurement outcomes for A and
B and their correlations, realism implies that the dichotomic results obtained by A,
A(~ak, λ) = ±1, and B, B(~bl, λ) = ±1, are defined prior to and independent of the mea-
surement. Here λ is a set of hidden-variables, which can be any kind of number, function
or operator. In addition, locality is the assumption that the results do not depend on
parameters in a space-like separated region, i.e. each measurement is a function of the
setting of the local measurement apparatus and the hidden-variables only.
The following algebraic identity holds for any dichotomic numbers (e.g. measurement
results) [52, 76]:

A1[B1 + B2] + A2[B1 −B2] = ±2. (2.14)

In an experiment the values of these four products cannot be directly compared as it
is generally impossible to acquire them in a single run of an experiment. What can be
experimentally tested is the average over the whole ensemble of emitted systems, i.e. the

9
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2. Theoretical Aspects

average over several equally prepared experimental runs. The average of the product of
measurement results, the correlation function, in a local hidden-variable theory is given
by

Ekl =

∫

dλρ(λ)A(~ak, λ)B(~bl, λ), (2.15)

where ρ(λ) is the probability distribution of the hidden-variables. We can write the
product of the outcomes under the integral because they are local and therefore sepa-
rable, i.e. they only depend on the settings of the local measurement apparatus. Since
identity (2.14) has to hold, a bound for all local realistic theories can be found:

SBell = E11 + E12 + E21 − E22 ≤ 2. (2.16)

This is the Clauser-Horne-Shimony-Holt inequality [26, 25], where SBell is the so-called
Bell parameter.
The experimental correlation function Ekl is given by

Eexp
kl = 〈Ak · Bl〉 =

∑

Ak · Bl · PAkBl
=

= (+1)(+1) · P++ + (+1)(−1) · P+− + (−1)(+1) · P−+ + (−1)(−1) · P−− =

= P++ + P−− − P+− − P−+, (2.17)

with PAkBl
being the probability of obtaining the measurement results Ak and Bl. The

quantum mechanical expectation value for particles with spin 1 (like photons) is

EQM
kl = − cos(ak − bl). (2.18)

For the rotational invariant state (2.4) the experimental expectation values are
Eexp

kl = EQM
kl · V , where V is the so called visibility, which is defined as

V =
max−min

max+min
, (2.19)

where max are the perfectly correlated and min the measurements with no correlations
at all. V is a measure for the perfect correlations, i.e. ideally for an entangled state
all measurements are perfectly correlated but in a real-life experiment errors occur and
therefore degrade the correlations. Due to V < 1 in any experimental setup, it is not
possible to achieve maximal violation of inequality (2.16), which is predicted by quantum
theory as SBell

max = 2
√

2 for |ψ−〉. Consequently, no violation at all can be observed for V <
1√
2
≈ 0.707. Violations of this bound have been observed in all kinds of experiments [35,

36, 5, 4, 71, 57] and hence exclude the possibility of a local realistic extension of quantum
theory.
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2. Theoretical Aspects

2.3. Higher-dimensional Quantum Systems

Up to now we have only considered two-dimensional quantum systems. Qubits have the
advantage that they are easy to realize in an experiment, like the polarization of pho-
tons or a two-level atom, and are mostly robust to external noise. Such low-dimensional
systems have been widely used in all sorts of quantum applications, like quantum key
distribution (QKD) (see Chapter 3), quantum teleportation [19], quantum computa-
tion [70] and many more. However, there are no fundamental reasons why these appli-
cations should only exploit qubits. At the moment it is only a matter of liability and
simplicity why qubits are used in the vast majority of quantum experiments.
Higher-dimensional photonic quantum systems, i.e. systems with properties with more
than two eigenstates, can be realized in many different ways, like bi-photons, higher-order
parametric down-conversion and energy-time entanglement [49, 28, 68, 64]. They offer a
variety of advantages and new possibilities in contrast to two-dimensional systems. E.g.
the Byzantine agreement problem [33] and quantum coin tossing [50] are not feasible
with qubit systems. In addition quantum computation complexity protocols become
more efficient [20] and the security of QKD is increased.
The lowest higher-dimensional quantum systems are qutrits (trit for three-dimensional).
The most general state of such a quantum system is

|ψ〉 = a eiφ0 |0〉 + b eiφ1 |1〉 + c eiφ2 |2〉, (2.20)

where the amplitudes, in analogy to (2.1), satisfy |a|2 + |b|2 + |c|2 = 1. The general two
particle qutrit state then is

|ψ〉 = αeiϕ0 |0〉 ⊗ |0〉 + βeiϕ1 |1〉 ⊗ |1〉 + γeiϕ2 |2〉 ⊗ |2〉. (2.21)

A simple, maximally entangled qutrit state can be obtained with α = β = γ = 1√
3

and

ϕ0 = ϕ1 = ϕ2 = 0. The generalization of the 4 qubit Bell-states (2.5) to qutrits gives

|ψ〉Bell =
1√
3

2
∑

k=0

e
2πi
3

kn|k〉 ⊗ |k +m〉, (2.22)

with 0 ≤ m,n ≤ 2. Consequently there are nine qutrit Bell states. Such maximally
entangled states also violate a Bell-type inequality and hence local realism. In the next
section a three-dimensional Bell inequality will be briefly derived.

2.3.1. Three-dimensional Bell inequality

Similar to the derivation of inequality (2.16), Bell inequalities for two qutrits can be
derived [27, 45]. Imagine therefore, observers A and B are sharing pairs of entangled
particles. Each observer can perform two measurements, i.e. a1,a2 and b1,b2. In contrast
to the CHSH inequality the possible outcomes are not dichotomic but can rather have

11



2. Theoretical Aspects

any integer value between 0 and d−1, where for our three-dimensional case d = 3. Note
that the assignment of values to the outcomes is an arbitrary choice. We will denote the
probability for a measurement a1 yielding the outcome j, a2 outcome k, b1 outcome l
and b2 outcome m as cjklm, with j, k, l,m = 0, . . . , d − 1. For any local realistic theory
there are d4 such probabilities completely determining all possible outcomes. cjklm has
to be positive, i.e. cjklm ≥ 0, and normalized,

∑

jklm cjklm = 1. Hence, the probabilities
for the four combinations of joint measurements of A and B are

P (a1 = j, b1 = l) =
∑

km

cjklm,

P (a2 = k, b1 = l) =
∑

jm

cjklm,

P (a1 = j, b2 = m) =
∑

kl

cjklm,

P (a2 = k, b2 = m) =
∑

jl

cjklm. (2.23)

For the local variables jklm we now introduce new variables, that we define as

r′ := b1 − a1 = l − j,

s′ := a2 − b1 = k − l,

t′ := b2 − a2 = m− k,

u′ := a1 − b2 = j −m. (2.24)

Note that in a local hidden variable theory, if we freely choose r′, s′ and t′ then u′ is
fixed, since r′ + s′ + t′ + u′ = 0. This restriction can be used to find bounds on local
realistic theories and hence Bell-type inequalities for arbitrary dimensions d. For our
case of d = 3, the simplest such inequality is

S3 = P (a1 = b1) + P (a2 = b1 − 1) + P (a2 = b2) + P (a1 = b2)−

−P (a1 = b1 − 1) − P (a2 = b1) − P (a2 = b2 − 1) − P (a1 = b2 + 1) ≤ 2, (2.25)

with

P (aa = bb + η) =

3
∑

η=1

P (aa = η, bb = (η + κ) mod 3) (2.26)

being the probabilities that the outcomes of observers A and B measuring aa and bb
differ by κ (modulo 3). For a detailed derivation see [27]. Note, that the local realistic
bound for inequality (2.25) is the same as for the standard CHSH inequality (2.16) and

12
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for qubits it is equivalent to the CHSH inequality. The maximal violation for the nine
maximally entangled states (2.22) is Smax

3 = 4/(6
√

3 − 9) ≈ 2.873, which is slightly
higher than the maximal violation for the qubit case. This inequality has already been
tested experimentally and a clear violation of local realism has been found [68]. It is
interesting to note, that in contrast to the standard CHSH inequality, certain non-
maximally entangled qutrit states show a stronger violation of inequality (2.25) than
any maximally entangled state. Namely, states of the form

|ψ〉non-max =
1√
n

(|0〉 ⊗ |0〉 + γ|1〉 ⊗ |1〉 + |2〉 ⊗ |2〉) , (2.27)

with γ = (
√

11 −
√

3)/2 and n = 2 + γ2, yield Snon-max
3 = 1 +

√

11/3 ≈ 2.915 [1], which
implies that this is not the optimal qutrit inequality.
The violation of a Bell-type inequality requires a certain visibility of the correla-
tions (2.19), which for the CHSH is around 71 %. For the three-dimensional inequality
presented above, the noise level can be somewhat higher, i.e. the correlations are more
robust to noise. The minimal required visibility for a violation is V = (6

√
3 − 9)/2 ≈

0.696 [27].
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3. Quantum Key Distribution

3.1. Classical Cryptography

For many applications and reasons information has to be shared between two (or more)
parties over more or less private channels and has to be kept secret from anyone else.
Therefore the information has to be encrypted, such that the message, without knowing
the decryption procedure, is useless.
In classical cryptography the simplest way is to take a message and replace each of the
letters with a different sign. More advanced procedures use various numerical operations
on the original message which are only known to legitimate partners. If two parties want
to communicate in a secure way they have to share such a key to encrypt and decrypt
messages. The security of the communication depends on the difficulty of breaking the
key, i.e. how long it takes to compute at least part of the key. The best strategy is to
use a totally random key, which, combined with the so called one-time-pad (or Vernam
Cipher), ensures perfect security. The one-time-pad is a key that is used only once to
encrypt a message and therefore is absolutely secure. As soon as it is used more often
it is relatively easy to break the key. Thus the main problem in classical cryptography
is the sharing of a secret key, which can be done by all sorts of means but ultimately
always compromises the security of the scheme.
A different cryptographical approach is the so called public key cipher. Each party
wanting to share a secret message announces an encrypter E (an encryption function)
publicly. The particular feature of E is that its inverse function D = E−1 (the decrypter)
cannot be computed from E in polynomial time, i.e. it is extremely difficult to deduce D
from E . The second party who wants to share a secret message with the first now only
has to take E , encrypt the message and send it to the first party. One of the most widely
used algorithms of this kind is the RSA [56] algorithm. The advantage of this scheme
is that the two parties do not have to meet frequently as in the classical cryptography
and further the parties can authenticate their messages (see [40] for a more detailed
introduction to cryptography).
It is believed that breaking such a cipher is equivalent to the factorization of a large
prime number, which is a very difficult task even for modern computers. But with the
fast progress made in developing and building a quantum computer the factorization
problems seem not unsolvable. Quantum computers are supposed to exponentially in-
crease the factorization speed and therefore make it possible to break current cryptogra-
phy schemes in a relatively short amount of time. If the fundamental and technological
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difficulties of building a quantum computer are ever overcome, the time needed in order
to break an encryption algorithm would decrease dramatically, as the necessary com-
puting time would only be a polynomial function of the length of the key instead of
an exponential. Therefore contemporary RSA cryptography would become useless and
sensitive data would be available to anyone with access to a quantum computer.
The almost perfect cryptography scheme, even unbreakable with quantum computers, is
a completely random one-time pad. The problem to produce such a key is the random-
ness, which is not a trivial issue as would naively be expected, and the distribution of
the key between the two legitimate partners who want to exchange encrypted messages.
In classical cryptography the key distribution is the part with the highest security risk.
Quantum Cryptography (QC), or rather Quantum Key Distribution (QKD), is a scheme
that allows the production of a secure key that can be used as a one-time pad. The basic
ideas of the cryptography are the same as in classical cryptography only that QKD
inherently provides a secure way of sharing a secret key and also solves the randomness
problem. The security of QKD is based on fundamental laws of quantum mechanics and
is therefore in principle secure. In this chapter the basic ideas of QKD will be presented.
Different protocols and applications can be found in sections 3.2 and 3.3.
In the last decades of the 20th century S. Wiesner, H. Bennett, G. Brassard and A.
Ekert [73, 12, 13, 32] proposed cryptography schemes where security relies on the fact
that every measurement alters the system and therefore any unwanted measurement can
be detected. Many different protocols were subsequently proposed, exploiting different
additional features of quantum theory. The basic idea for all schemes is the same — two
observers exchange a key by sending quantum particles to each other, which they then
measure. Only the measurement projects them into a definite state (with a probability
of up to unity, depending on the protocol) and results in the desired correlations. Any
manipulation, i.e. the attempt of eavesdropping, results in errors and is therefore de-
tectable. However different the various protocols are, they all provide a raw key, which
has to be further processed. First the measurement bases have to be compared (this is
the so called basis reconciliation), which leads to the sifted key. Additionally classical
procedures are implemented to perform error correction and privacy amplification. In
the following the two main schemes will be presented and some advantages and disad-
vantages will be discussed.

3.2. The BB84 Protocol

The BB84 Protocol was originally conceived by Charles Bennett and Gilles Brassard in
1984 [12]. In its original version an observer A sends single particles to an observer B.
The particles are produced in four different states, two in each of two mutually conjugate
bases. The states of the same basis are orthogonal to each other, e.g. for polarization
states of photons the four states could be horizontal (H), vertical (V ), +45 and −45
polarization. A randomly (and with equal probability) chooses between the states she
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Figure 3.1.: The BB84 protocol with qubits encoded in the polarization states of
photons. Observer A sends single photons to observer B. The choice of the polarization
state, i.e. one of the four states ±45 or H/V , she sends is completely random. If B
then measures the photon in the right basis he gets outcomes perfectly correlated to A’s
preparation. However, if he chooses the wrong basis, the outcome result is random. (by
Hannes R. Böhm)

sends to B. B measures the particles, switching between the two measurement bases at
random. ForB measuring in the same basis as the particle was sent, observer A knows the
result of B’s measurement. Therefore, both announce in which bases he/she measured
(typically this is done after a few measurement runs or even after each run), which can
be performed over a classical public channel, as it does not contain any information on
the result itself. They compare the bases and hence know which of the results to keep.
The results of the measurements in which B does not choose the preparation basis of the
particle are completely random, as the bases are mutually conjugated. This is also the
feature why an eavesdropper E (someone who is not authorized to but tries to gain some
knowledge of the exchanged key) is not able to measure the particle before B receives it
and to resend a copy (due to the obtained result) without introducing detectable errors.
In that way, A and B produce a key, that is random (due to the randomness of the
preparation of the initial states sent to B) and secure, as an intrusion can be easily
detected by comparing a small set of the keys and checking whether they are, up to
a maximal error rate, equal. In the BB84 protocol the error rate in the key is taken
as a security prove. In addition, for the qubit case there is a one-to-one correspondence
between the violation of the CHSH inequality, the mutual information and the maximally
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allowed noise limit [40].
In practice it is difficult to produce real single particle states needed for the protocol
(see 3.4), which is normally realized with faint laser pulses [11, 51, 22]. It is therefore
convenient to take entangled states, where only the particles of the entangled pair and
no third particle is correlated. E.g. one of the maximally entangled Bell states (2.5)
is produced and one of the particles is distributed to observer A and the other to B.
The two observers measure randomly in one of the two bases and if they measure in the
same, they always have perfect (anti-) correlations, just as in the original BB84 protocol.
Such variations of the original BB84 scheme have been experimentally demonstrated and
thereto entanglement in many different degrees of freedom has been exploited, e.g. the
polarization of photons and energy-time correlations of photons [53, 65].

3.3. The Ekert Protocol

In 1991 Artur Ekert proposed a novel QKD scheme based on entangled particles and
a Bell inequality [32]. The observers A and B share an entangled pair of particles and
perform measurements with at least three analyzer settings each. The settings which are
the same for both are used for key production and the other are chosen such, that they
violate a Bell’s inequality. The inequality is only maximally violated if no eavesdropper
tried to acquire some information on the QKD, as this would degrade the entanglement
of the particles. Hence, this is used to test the security of the protocol.
For a pair of polarization entangled photons in state (2.4), where |0〉 is horizontal (H)
polarization and |1〉 vertical (V ), observer A randomly chooses between the polarizer
settings a1 = 0, a2 = π

8
and a3 = π

4
, whereas B between b1 = π

8
, b2 = π

4
and b3 = 3π

8

(see Fig. 3.2). If they measure the combinations {a2, b1} or {a3, b2} they obtain perfectly
correlated results and hence produce a key. With the other combinations of settings
they can look for a violation of the CHSH inequality and hence check for any unwanted
intrusion in their QKD protocol.

3.4. Security of QKD

The simplest attack on a QKD protocol an eavesdropper E could make, is to measure
B’s particle and resend, in a state based on the measurement result, another particle
to B. If E measures the particle in the same basis as A will (or prepared the state
in), A and B cannot detect the intrusion. However, if E gets the basis wrong, she
introduces detectable errors. For 75 % knowledge of the key she introduces a qubit error
rate (QBER) of 25 %. Here two fundamental features of QKD guarantee the security
of the protocol — the randomness of the measurement result (or equally the random
state preparation of A), wherefore E has only a probability of 1

2
to guess the right basis,

and the no-cloning theorem. Latter ensures the impossibility of E perfectly copying the
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0

p/8

p/4

3p/8

Figure 3.2.: Polarizer settings for an entangled photon Ekert scheme. The red lines are
the angles of the polarizer for observer A and the green for observer B. The overlapping
settings are used for key production and the rest are to check the security of the protocol
via the violation of the CHSH inequality.

particle and resending the original to B and to measure the copy after B announces the
basis of his measurement.
A different approach for E would be to imperfectly copy the state of the particle that is
sent to B, wait until B reveals his measurement basis and only then measure her copy.
For any qubit scheme this is the optimal way for E to gain at least some information on
the key [37].
For any such attack, the protocol is still secure as long as the mutual information of A
and B is greater than the mutual information of A and E (or B and E). The upper
bound of the possible mutual information of an eavesdropper with one of the observers
is proportional to the noise rate of the protocol, as E introduces more errors the more
she interferes to gain information. Therefore an upper noise bound for a secure key
distribution can be found (see Figure 3.3). For the qubit BB84 and the qubit Ekert
scheme this bound is 14.64% [37]. With modified protocols this upper limit can be
slightly increased [21]. For these different schemes and different types of eavesdropping
attacks, like a coherent attack, where E does not measure individual qubits but rather
several coherently, the noise limit varies [24]. For a review on eavesdropping strategies
and QKD in general see [40].
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Figure 3.3.: The left picture shows the normalized mutual information IAB between
observers A and B (yellow line) and IAE for A and E (green line) as a function of the
quantum error rate for a two bases qubit BB84 protocol. The point where the two curves
intersect is the upper bound for the error rate for a secure protocol, which is around
0 .1464 . The right picture shows the same for a qutrit BB84 protocol, where the upper
noise bound is 0 .2113 . Here IAB is the red line, while IAE is turquoise.

3.5. QKD with Qutrits

Quantum key distribution has been proven to be a very useful and reliable technique of
key generation for the encryption of sensitive data. As discussed previously in this chap-
ter, there are various different protocols which all rely on similar features of quantum
theory. Up to date all QKD schemes were based on qubits. However, higher-dimensional
systems offer various advantages [18, 7], such as an increased level of tolerance to noise
at a given level of security and a higher flux of information compared to the qubit cryp-
tography schemes. It is easy to see, that each generated key contains more information
than a key in a qubit scheme, as a higher alphabet is used. The information flux increases
with the order of dimension of the system. For binary systems one needs 8 bits (1 byte)
to encode the standard ASCII characters, whereas using trinary systems 5.048 trits are
sufficient. Further, it was theoretically shown, that the qutrit QKD protocols allow for a
higher noise rate and still be considered secure [24, 29]. E.g. the upper noise bound for
a qutrit Ekert protocol in order to still ensure a secure key generation is approximately
22.47 %. For a three-dimensional BB84 protocol the noise can be as high as 21.13 % or
even 22.67 % if the observers use a four bases protocol (see Table 3.1).

3.5.1. Three-dimensional BB84 and Ekert protocols

The extension of both, the BB84 and the Ekert qubit protocols to three-dimensional
quantum systems is relatively simple. For the BB84 the only difference is, that the
outcomes are no longer dichotomic but rather trichotomic. In its simplest form it still
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d DBB84
2 [%] DBB84

d+1 [%] DEkert[%]
2 14.64 15.64 14.64
3 21.13 22.67 22.47
4 25 26.66 26.58
5 27.64 29.23 29.2
8 32.32 33.44 33.43

Table 3.1.: Maximal error rates for different protocols and dimensions — DBB84
2 is the

BB84 protocol with two mutually unbiased bases and DBB84
d+1 with d + 1 MUBs. DEkert

denotes the maximal allowed error rate for Ekert protocols in d dimensions. This clearly
shows that the higher-dimensional the quantum key distribution scheme, the more secure
it is. [24, 30]

uses two mutually unbiased bases. As mentioned in the previous section, the security
increases with the number of MUB bases, just like the noise resistance in the six-state
protocol [21] is significantly higher than for the standard BB84 protocol. For the qutrit
BB84 scheme up to four MUBs can be used.
With the Ekert protocol it is a little bit different, as there is no unique generalization
of the CHSH inequality. Therefore, there are various possible Bell-type inequalities that
can be exploited for the security survey. Nevertheless, several Ekert protocols for three-
dimensional quantum systems have been proposed [18, 29]. One possibility is to use
inequality (2.25). Two observers A and B switch between three settings, where a1, a2

(b1, b2) are the settings to maximally violate the Bell inequality and a3 (b3) is used for
key production. A and B choose their settings independently and at random and also
record their detections independently. After sufficiently many measurement runs A and
B compare their settings. 1

9
of the produced data can be used for the key, while 4

9
of

the data are for the violation of the Bell inequality and the remaining 4
9

have to be
discarded. After this basis reconciliation B sends his data for the Bell inequality check
to A, who computes the value of S3. In the case that S3 > 2, the key is considered secure
and any eavesdropping will not have gained useful information on the key.
Although qutrit quantum cryptography schemes are theoretically a relatively simple
extension of the well established qubit protocols and even promise better performance
and security, no experimental demonstration has been performed so far.

3.6. Mutually Unbiased Bases

The BB84 and the Ekert scheme, at least in their qubit versions, require different mutu-
ally unbiased bases. Mutually unbiased means, that the overlap of all eigenvectors of one
basis with all eigenvectors of a second basis are 1 over the square root of the dimension
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d of the basis, i.e.

〈ϕn|ψm〉 =
1√
d
. (3.1)

Here ϕn ∈ A and ψm ∈ B, with 0 ≤ n,m ≤ d−1. In general, if d is the power of a prime
number, there are exactly d+1 MUBs [74]. For qutrits the four possible MUB bases are

Basis A : |0〉, |1〉, |2〉 (3.2)

Basis B :
1√
3

(|0〉 + |1〉 + |2〉)

1√
3

(

|0〉 + ei 2π
3 |1〉 + e−i 2π

3 |2〉
)

1√
3

(

|0〉 + e−i 2π
3 |1〉 + ei 2π

3 |2〉
)

(3.3)

Basis C :
1√
3

(

ei 2π
3 |0〉 + |1〉 + |2〉

)

1√
3

(

|0〉 + ei 2π
3 |1〉 + |2〉

)

1√
3

(

|0〉 + |1〉 + ei 2π
3 |2〉

)

(3.4)

Basis D :
1√
3

(

e−i 2π
3 |0〉 + |1〉 + |2〉

)

1√
3

(

|0〉 + e−i 2π
3 |1〉 + |2〉

)

1√
3

(

|0〉 + |1〉 + e−i 2π
3 |2〉

)

(3.5)

It is easy to verify, that they are mutually conjugated and that each basis is orthonormal.
In order to use the MUBs in a quantum protocol like QKD, one has to be able to
transform between the bases. For two-dimensional systems these are simply states on
the surface of the Poincaré sphere rotated by π

2
, where the vectors of one basis enclose

an angle of π. E.g. for the polarization of photons, the bases {|H〉, |V 〉}, {|+〉, |−〉} and
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{|R〉, |L〉} are mutually unbiased, where |+〉, |−〉 represent ±45 polarization and |R〉, |L〉
right and left polarization, respectively. The transformation in the simplest case, is done
with a polarizer. To make any general transformation two λ/2, one λ/4 waveplates and a
polarizer suffice [44]. Due to the conservation of probabilities, such a transformation has
to be unitary, i.e. any transformation operator T̂ has to satisfy T̂ �T̂ = T̂ T̂ � = 1, where T̂ �
is the adjoint (complex conjugated and transposed) of T̂ and 1 the unity element. Hence,
in two-dimension the transformation is an element of the group SU(2) and in general
d-dimensions T̂ ∈ SU(d). SU(d) stands for the group of Special Unitary matrices in d-
dimensions, where special means det T̂ = 1. For the case of three dimensions, in which we
are interested here to make the transformations for a QKD protocol, T̂ ∈ SU(3). Given
a density matrix1 ρ, one can expand it into the unity matrix and the eight generators2 λr

of the SU(3), i.e. any transformation T̂ ∈ SU(3) is defined by 3 · 3− 1 = 8 independent
parameters nr (r = 1, . . . , 8):

T̂ =
1

3

(

1 +
√

3nr · λr

)

. (3.6)

The parameters nr are vectors in a three-dimensional Hilbert space H3, therefore repre-
senting all possible pure qutrit states. The set of all nr is the analogue of the Poincaré
sphere in three dimensions, defining the seven-dimensional unit sphere S7. It is inter-
esting to note, that mutually orthogonal states are not on opposite sides of the sphere
but maximally enclose an angle of 2π

3
[46]. Reck et al. proved that it is experimentally

possible to realize any such unitary operation for arbitrary dimensions d [54].

1The density matrix of a state |ψ〉 is the product of |ψ〉 with its adjoint, i.e. ρ = |ψ〉〈ψ|. If |ψ〉 is a
pure state, ρ is hermitian, positive and projective, i.e. ρ = ρ� = ρ2 ≥ 0. For a mixed state ρ2 6= ρ.

2One of the standard representations of these generators are the Gell-Mann matrices [38], which obey
the commutation relation [λr, λs] = 2ifrstλt, where frst are completely antisymmetric structure
constants.
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The electromagnetic field and its quantization, the photon, possess both linear and
angular momentum. While it is well-known that linear momentum is exchanged in the
interaction of photons and matter, it was only in 1936 when Beth experimentally proved
that the angular momentum exerted a torque on a birefringent plate [14]. In Beth’s work
he used (circularly) polarized photons, which is the spin part of the angular momentum.
The other part is the orbital angular momentum (OAM), which is associated with the
spatial distribution of the field. Both angular momenta are, in contrast to the linear
momentum, quantized, where the spin component only exists in ±~ and the orbital
component in multiples of ~. E.g. a right-handed polarized photon with momentum +~

is transformed into a left-handed photon with momentum −~ by passing a λ/2 waveplate
and therefore 2~ of momentum are transferred from the photon to the waveplate. Allen
et al. [2] showed theoretically that beams with a phase singularity possess OAM and that
they are eigenmodes of the angular momentum operator1 L̂z. It was later experimentally
confirmed by He et al. [43] that orbital angular momentum can actually be associated
with such modes.

4.1. Paraxial Waves

A paraxial wave’s wavefront normals are paraxial rays, i.e. they are parallel to the
propagation axis. Strictly speaking this is only true for plane waves. Nevertheless light
is often described as a paraxial electromagnetic wave, what is a good approximation if
it can be described as a plane wave with a slowly varying position dependent amplitude:

U(r) = A(r)e−ikz, (4.1)

where r =
√

x2 + y2 + z2, k the wavenumber and z the position in the propagation
direction. Such a paraxial wave is realized if the variation of A(r) is small compared to
the wavelength λ and therefore U(r) locally resembles a plane wave. In most situations
this description is sufficiently accurate for light waves. Any such paraxial wave has to

1In atomic physics the total angular field Ĵ is decomposed into two observables, i.e. Ĵ = L̂ + Ŝ. Ŝ
is the spin component and L̂ the orbital component. L̂z therefore is the operator measuring the
z component of the orbital angular momentum. However, it is not always clear, whether L̂ and Ŝ

are separate physical observables. For transversal modes of photons, this was shown by the work of
Allen et al. .
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Figure 4.1.: The left picture illustrates the Rayleigh length z0, which is the distance

where the beam waist is
√

2 ·W0. The right picture shows the Gouy phase ζ(z), being the
phase retardation of the Gaussian beam relative to a uniform plane wave (images taken
from [58]).

satisfy the paraxial Helmholtz equation

∂2U

∂x2
+
∂2U

∂y2
− i2k

∂U

∂z
= 0. (4.2)

Probably the best known solution of this equation is the Gaussian beam

U(r) =
A1

iz0

W0

W (z)
e
− ρ2

W2(z) e−ikz−ik
ρ2

2R(z)
+iζ(z), (4.3)

where A1 and z0 are parameters determined by the boundary conditions, the latter being
the so-called Rayleigh length — it is defined as the axial distance from the beam waist
where the beam radius is increased by a factor of

√
2. Further, ρ2 = x2 + y2 (the radial

distance) and the other variables are beam parameters and are defined as functions of
z0 and the wavelength λ:

W (z) = W0

[

1 +

(

z

z0

)2
] 1

2

,

R(z) = z

[

1 +

(

z

z0

)2
]

,

ζ(z) = tan−1 z

z0
,

W0 =

(

λz0
π

)
1
2

. (4.4)

W (z) is the distance in axial direction in which the maximal intensity decreases by 1
e2

and is also called beam radius. Its minimum value is at z = 0 and is equal to W0, the
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so-called waist radius. 2W0 is also denominated as the spot size. Additionally, R(z) is
the radius of curvature of the wavefront. It is infinite at z = 0 (just like a plane wave)
and reaches a minimum value of 2z0 at z = z0. Finally, ζ(z) is the Gouy phase, a phase
retardation relative to a uniform plane wave, which ranges from −π

2
to +π

2
between

z = −∞ and z = +∞. Hence the total acquired phase retardation is π. The expression
in the second exponent of (4.3) is the overall phase of the Gaussian beam ϕ(ρ, z). On
the beam axis the phase reduces to ϕ(0, z) = kz− ζ(z), where kz is the phase of a plane
wave and ζ(z) the above described respective retardation.

Figure 4.2.: Hermite Gaussian modes have two indices m,n, where m is the number of
vertical nodes, while n are the horizontal nodes. The upper left picture is the HG0,0 mode,
which is simply the Gaussian mode (and equivalently the LG0,0 mode). The upper right
is the HG0,1, while the lower left and right are the HG1,0 and HG3,1 modes, respectively.

In addition to the relatively simple and well-known Gaussian beam there are a number
of other solutions of the paraxial Helmholtz equation (4.2). E.g. the transversal modes
of a laser, which fulfill certain transverse boundary conditions, i.e. the electromagnetic
field has to fall to zero in the direction of ρ. In their cartesian description, used for
rectangular symmetrical situations, they are the Hermite-Gaussian modes (HG) (the
intensity profiles of some HG modes are shown in Fig. 4.2) and in the cylindrically
symmetric solutions they are called Laguerre-Gaussian modes (LG). Such transversal
modes have a non-vanishing orbital angular momentum. In the following we will only
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consider LG modes. An LG mode is defined as

Up,l(ρ, φ, z) =

√

2p !

π(p+ |l|)!
1

W (z)

(√
2 r

W (z)

)|l|

e
−r2

W2(z) e
−ikr2

2R(z) e−i(2p+|l|+1)ζ(z) e−ilφL|l|
p

(

2r2

W 2(z)

)

,

(4.5)
where Ll

p(x) are the generalized Laguerre polynomials. Here the Gouy phase is

ζLG = (2p+ l + 1) · ζ(z). (4.6)

The Laguerre-Gaussian modes, which we will denote as LGp,l have two in-
dependent indices p and l, where p + 1 represents the number of ra-
dial nodes, while the index l is the winding number, with 2πl describing
the change in phase on a closed path around the propagation axis (4.3).

Figure 4.3.: Sketch of the
helix of an LG0,x mode.
2πl is the change in phase
around a closed path. (by
Martin Stütz)

This phase change is due to the term e−ilφ in Eq. (4.5)
and results in a phase-singularity in the beam center, as
there the change in phase becomes infinitely large. Hence,
in contrast to the plane wave with plane wavefronts, the
wavefronts are helical, which can be understand as the
Poynting vector2 spinning around the beam axis. The or-
bital angular momentum3 of an LG mode is given by l · ~
and l is sometimes called the topological charge of the sin-
gularity. A mode with indices p = l = 0 is a Gaussian
mode and therefore has no orbital angular momentum.
The LG modes form an orthogonal basis and hence span
an infinite-dimensional Hilbert space. We will restrict our
further discussion to modes with index p = 0. These LG0,l

also span an infinite-dimensional Hilbert space and they
are often called doughnut modes, due to their characteris-
tic intensity profile (see Fig. 4.4).

4.2. Generation

of Laguerre-Gaussian Beams

LG modes are actual modes of a laser and are produced
in almost any laser cavity. However, generally lasers are

constructed such, that they suppress these modes and only emit a pure Gaussian beam.

2The Poynting vector is defined as S = E ×H , where E and H are the electric and magnetic field,
respectively. For a plane wave it points in the propagation direction, as it has no orbital angular
momentum.

3The orbital angular momentum is, as already mentioned above, the eigenvalue of the operator L̂z =
−i~ ∂

∂φ
.
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Figure 4.4.: Numerically calculated Laguerre-Gaussian modes with different indices p
and l. The upper left is an LG0,1 mode and the upper right an LG0,3 mode. Due to
their characteristic intensity profile, these modes are called doughnut modes. LG0,3 is a
mode with a slightly bigger phase singularity compared to LG0,1. In the lower pictures
two radial nodes can be observed because of a non-vanishing index p = 1, where the left
is an LG1,0 and the right an LG1,2 mode.

In order to efficiently produce Laguerre-Gaussian beams several different approaches can
be used — e.g. HG can be directly converted into LG modes. Therefor two cylindrical
lenses have to be appropriately aligned such, that they introduce a Gouy phase on an
incident HG mode, which converts the HG with indices m and n into an LG with
l = m − n and p = min(m,n) [8]. However, producing the required HG modes with a
commercial laser involves the same difficulties as directly producing LG modes.
A different approach would be to use spiral phase plates [66]. These are transparent plates
with a spiral surface, which is one period of a helix, ended with a step discontinuity s.
With s = lλ

n1−n2
, where λ is the wavelength, n1, n2 are the refractive indices of the plate

and of the surrounding medium, respectively, the plate creates an azimuthal mode index
l. The problem with the spiral plates is the accuracy of s, which for small λ is difficult
to realize and any deviation is observed as a break in the doughnut intensity pattern.
Computer generated holograms probably provide the best way of producing an LG
mode out of the Gaussian mode of a laser beam. The big advantage is, that basically
any mode can be produced, without the need of complicated experimental setups. The
desired holograms are simply calculated and put on a suitable medium.
In general a hologram is the recording of the interference pattern of the desired mode
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4. Orbital Angular Momentum

with a suitable reference mode. The simplest reference field is the plane wave,

R = R0e
ikxx+ikzz, (4.7)

where R0 is the amplitude and kx and kz are the components of the wavevector in the
respective direction. The interference pattern of (4.7) and (4.5) at z = 0 is given by

I(ρ, φ) = |R0e
ikxx + Up,l(ρ, φ)|2, (4.8)

which can be numerically calculated. The result of such a numerical calculation, for
indices p = 0 and l = 1 is shown in Fig. 4.6. If such a hologram, which can be simply
printed on a transparency or e.g. be etched onto a quartz plate, is illuminated with a
gaussian beam (which is very close to a plane wave), the LG0,1 mode is reproduced.

Figure 4.5.: Scheme of the
transformation of a computer
generated phase hologram. An in-
cident wave with index l is trans-
formed into a wave with index
l+ 1. The process can be inverted
and hence such a hologram can be
seen as a realization of an approx-
imate ladder operator.

In the first diffraction order of such a hologram, a
phase of ei(l+∆l)φ is induced, which results in the
desired LG0,1 mode. One sees, that if the l in the
original beam is non-zero, but for example l = 2,
the resulting first order diffraction is an LG0,3 mode.
Additionally, the higher diffraction orders produce
a correspondingly higher ∆l, i.e. the second order
diffraction induces a phase of ei(l+2∆l)φ and so on.
If the beam direction is inverted the transformation
process of the hologram is also inverted and an LG0,1

is transformed into an LG0,0. Such a hologram can
therefore be seen as the implementation of an ap-
proximate ladder operator, which increases (e.g. +1)
or decreases (−1) the index l of an arbitrary incident
mode (see Fig. 4.5).
In order to maximize the intensity of the first diffrac-
tion order, which is needed to reduce the loss in other
orders and therefore increase the converted to incom-
ing signal ratio, one can blaze the grating obtained
in (4.8). For a detailed description of this technique
and related issues on holograms see [3, 67]. In Fig. 4.6
the numerical result of such a calculation is shown.
If such a hologram is realized on reflective material,
it is called a reflection hologram. Throughout this
work we only use transmission holograms, albeit in

chapter 7 we will briefly discuss a special kind of reflection hologram, which is envisioned
for future applications. The most general transformation by a transmission hologram is
described as

Uout(ρ, φ) = T (ρ, φ)Uin(ρ, φ), (4.9)
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Figure 4.6.: A computer generated phase hologram, which is the interference pattern of
a plane wave with an LG0,1 mode, i.e. I(ρ, φ) = |R0e

ikxx +Up,l(ρ, φ)|2. The amplification
on the right illustrates the singularity and the blazing of the grating.

where Uout and Uin are the transformed and the original field, respectively. T is the
transmission function describing the hologram, which in the above case for a blazed
grating is

T (ρ, φ) = ei δ
2π

(∆lφ− 2π
Λ

ρ cos φ)mod2π, (4.10)

where δ is the amplitude of the phase modulation, Λ the grating’s periodicity and ∆l the
number of displacements. This transformation only holds if the incoming beam is cen-
tered on the hologram. E.g. a Gaussian beam is transformed into an LG0,1 beam, with a
central singularity in its intensity profile. However, if the hologram is slightly displaced
from the beam center, a coherent4 superposition of Uout and Uin is produced. Addition-
ally, higher order modes, although with a very low ratio, are coherently superposed. The
relative amplitudes of the different modes are given by

Al
L(ρ0, φ0) =

∫ +∞

−∞

∫ 2π

0

ρ dρ dφ
(

UP,L(ρ, φ, 0) e−i∆l 2π
Λ

ρ cos φ
)∗
T (ρ− ρ0, φ−φ0)U0,l(ρ, φ, 0).

(4.11)
Al

L is the amplitude of the LGP,L mode in the first diffraction order, where the original
beam is a LG0,l and the hologram is displaced relative to the beam center by ρ0, φ0 (see
Ref. [9]). The intensity distributions of the various modes as a function of the hologram
position are shown in Fig. 4.7. This feature gives an easy way of producing all sorts of
superpositions and we will discuss its application in a QKD protocol in the following
section. However, for the same reason, the resulting modes are always superpositions
(although arbitrarily small) of the desired index l with different indices p and hence the
modes produced with holograms and spiral phase plates never are perfectly pure LG
modes.

4Coherent means with a fixed phase relation.
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Figure 4.7.: Relative intensity distribution of several LG modes as a function of the
hologram displacement from the beam center in units of the waist radius. The hologram
does a +1 transformation on an incident Gaussian mode. The maximal contribution of
higher order modes is less than 3 %. (calculated by Gregor Weihs)

Note that superpositions of LGmodes can also be produced by splitting a Gaussian beam
into two modes, transforming one with a hologram and recombining the two modes. This
interferometric method can be scaled to arbitrary many modes and hence all sorts of
superpositions can be produced. We will not further discuss this scheme but a short
introduction can be found in [67].

4.3. Holograms and MUB Transformations

As mentioned in section 3.6, transformations between different MUB bases are required
in order to realize a BB84-type QKD. The computer generated phase holograms de-
scribed above can in principle be used to achieve such a transformation. If two consecu-
tive holograms are chosen such, that one makes a +1 and the other a −1 transformation
in the index l, then by displacing them appropriately it seems possible to make a MUB
transformation. In this section we will first analytically discuss such transformations and
then show the results of numerical calculations for a two-bases BB84 protocol. In order
to find a suitable transformation, different criteria have to be fulfilled:� The transformation matrix has to be unitary.� The columns of the matrix have to be mutually orthogonal, which corresponds to

the orthogonality of the basis vectors.

30

Graphiken/Mode_Decomposition.eps


4. Orbital Angular Momentum� As the MUB condition (3.1) has to be satisfied, the amplitudes of the matrix
elements are supposed to be uniform.

In principle all criteria have to be exactly satisfied. As a first step we will analyze how
well they can be satisfied by our approach.

4.3.1. An illustrative Approach

An ideal hologram only creates superpositions of the fundamental and the converted
mode, without any higher order part, i.e. |l〉 → a|l〉 + b|l + 1〉 for the +1 operation and
the respective for the −1, where |l〉 is an LG0,l and |l + 1〉 an LG0,l+1 mode. It is clear,
that a real hologram always contains higher order modes because it would otherwise
violate unitarity, but the higher order parts are negligibly small (at most around 3 %
— see Fig. 4.7). Therefore it seems reasonable to assume an ideal hologram and show
that a +1/− 1 combination cannot, even in principle make a SU(3) transformation. To
demonstrate this, we will use a simple illustration:

-3 -2 -1 0 +1 +2 +3

-1 1√
3

0 1√
3

+1 1√
3

where the columns of the table represent an entangled state |Ψ〉 = 1√
3
(| − 1 + 1〉 +

|00〉 + | + 1 − 1〉) of the original beam. The columns are the amplitudes of the modes
of one particle and the rows represent the individual mode amplitudes of the other
particle. Hence, performing a transformation on one means, the amplitudes of the rows
are left unchanged, while the columns are actually transformed (or viceversa). A +1
transformation on one particle therefore yields the following:

-3 -2 -1 0 +1 +2 +3

-1 1√
3

0 1√
3

+1 1√
3

→

-3 -2 -1 0 +1 +2 +3

-1 a√
3

b√
3

0 a√
3

b√
3

+1 a√
3

b√
3

In a simplified matrix representation this looks like




•
•

•



→





•
• •

• •





where the dots stand for non-vanishing amplitudes. A +1/ − 1 combination of two
consecutive holograms would then result in
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



•
•

•



→





• •
• • •
• •





which clearly is not a suitable transformation between MUB bases, as some of the am-
plitudes are completely empty (or for non-ideal holograms close to zero). If one employs
a −2 hologram (|l〉 → d|l〉+ e|l− 1〉+ f |l− 2〉), which simply is the interference pattern
of a plane wave with an LG0,2 mode, instead of the −1 hologram, the transformation
looks like





•
•

•



→





• • •
• • •
• •





Again, not all amplitudes are non-zero and hence only the combination of +2 with a −2
hologram can in principle achieve the desired transformation.

4.3.2. Three Holograms

The case with two 2-step holograms is intuitively included in the case with three consec-
utive holograms, e.g. a +1/−2/+1 combination. An approach with three hologram has
the advantage of providing more degrees of freedom (remember, that for a general SU(3)
transformation, eight independent parameters are required). Subsequently we will try to
solve this analytically and we will also show some numerical calculations.
We therefore start with +1 transformation hologram: |l〉 → a|l〉+ b|l+ 1〉, followed by a
−2: |l〉 → c|l〉+ d|l− 1〉+ e|l− 2〉 and finally another +1: |l〉 → f |l〉+ g|l+ 1〉. In order
to make the calculations simpler we choose d = 0. The first transformation yields

-3 -2 -1 0 +1 +2 +3

a b
a b

a b

The second and third give

-3 -2 -1 0 +1 +2 +3

ae be ac bc
ae be ac bc

ae be ac bc

→

-3 -2 -1 0 +1 +2 +3

aef aeg+bef beg+acf acg+bcf bcg
aef aeg+bef beg+acf acg+bcf bcg

aef aeg+bef beg+acf acg+bcf bcg
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If, without loss of generality, we now set a = c = f = 1 and b = γ1e
iϕ1 , e = γ3e

iϕ3 ,
g = γ4e

iϕ4 and if we restrict ourselves to the desired subspace, we can rewrite the list in
matrix form

T=





γ3e
iϕ3 γ1γ3e

i(ϕ1+ϕ3) + γ3γ4e
i(ϕ3+ϕ4) γ1γ3γ4e

i(ϕ1+ϕ3+ϕ4) + 1
γ1γ3e

i(ϕ1+ϕ3) + γ3γ4e
i(ϕ3+ϕ4) γ1γ3γ4e

i(ϕ1+ϕ3+ϕ4) + 1 γ1e
iϕ1 + γ4e

iϕ4

γ1γ3γ4e
i(ϕ1+ϕ3+ϕ4) + 1 γ1e

iϕ1 + γ4e
iϕ4 γ1γ4e

i(ϕ1+ϕ4)





As all entries have to have uniform amplitudes but can still have an arbitrary phase, we
get

γ3 = γ1γ4, (4.12)

γ2
3e

i(ϕ1+ϕ3+ϕ4) + 1 = γ3e
iϕx , (4.13)

γ1e
iϕ1 + γ4e

iϕ4 = γ3e
iϕy , (4.14)

γ1γ3e
i(ϕ1+ϕ3) + γ3γ4e

i(ϕ3+ϕ4) = γ3e
iϕz , (4.15)

where we introduced the new phases ϕx, ϕy, ϕz. By rearranging (4.15) to (γ1e
iϕ1 +

γ4e
iϕ4)eiϕ3 = eiϕz and substituting it into (4.14) we arrive at

γ3e
i(ϕ3+ϕy) = eiϕz (4.16)

and thus obtain γ3 = 1 = γ1γ4. From (4.13) we now get ϕ1 + ϕ3 + ϕ4 = ±2π
3

. The
orthogonality condition gives three further constraints, which leaves us with five equa-
tions for five unknown variables. It was however not possible to solve these equations by
hand and even with Mathematica no useful result could be obtained. It leaves the open
question, whether such a transformation matrix can be found at all. Not to mention,
that the case where d 6= 0 is somewhat more complicated. We were not able to show if
this problem is solvable at all.
Consequently it seems not possible to realize a qutrit BB84 protocol with two or three
consecutive holograms. It is however likely that some other schemes, like the interfero-
metric method, can actually perform the needed transformations.

4.3.3. A numerical Approach

With Wolfram’s Mathematica we calculate the amplitudes (4.11) for different combina-
tions of holograms. The first approach is two holograms, where one does a +1 and the
other a −1 transformation. The horizontal and vertical positions with respect to the
beam center of both holograms are individually changed, with a maximal displacement
of ±1.5 and a step size of 0.1 (in arbitrary units). The respective amplitudes for the de-
sired qutrit subspace, i.e. LG0,−1, LG0,0 and LG0,1, are calculated for every combination
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of the 314 relative positions. This data is then used to find the transformation that best
suites the three criterions from section 4.3.1.
Other combinations of holograms are also evaluated. E.g. a +1/ − 2/ + 1 combination
is simulated with maximal displacements of ±1 and a step size of 0.1, which is a total
number of 216 combinations. Finally we even tried 4 holograms but the exponentially
increasing number of combinations and the hence very high demand on computational
power made it more and more difficult. On top of that the quality of the results with
more holograms did not increase the way we expected. The program for simulating three
holograms is shown in Appendix A.1.
Some calculated matrices Ti for the three hologram case are shown here. The entries are
rounded off to the third decimal places and the matrices are checked for uniformity (by
taking the square of the matrix and comparing the entries) and orthogonality.

T1 =





0.589 + 0 i 0 + 0 i 0 + 0 i
0 + 0 i 0.785 + 0 i 0 + 0 i
0 + 0 i 0 + 0 i 0.589 + 0 i



,

which is clearly orthogonal but nothing close to uniform.

T2 =





−0.131 + 0.111 i 0 − 0.245 i −0.024 − 0.019 i
−0.190 + 0.183 i −0.004 + 0.120 i 0.093 − 0.125 i
−0.086 + 0.123 i 0.010 + 0.080 i −0.151 + 0.261 i





The column vectors of T2 are almost orthogonal, i.e. the inner products are 0.005, 0.009
and 0.010, but again, the uniformity is not provided.

T3 =





−0.196 + 0.097 i −0.062 − 0.010 i −0.121 + 0.006 i
−0.117 + 0.036 i −0.179 + 0.115 i 0.077 + 0.038 i
−0.077 + 0.026 i −0.010 + 0.044 i −0.181 + 0.140 i





Here the orthogonality is not entirely satisfied, as the inner products are 0.034, 0.017
and 0.033, the matrix is not uniform and additionally the amplitudes are very small.
Unfortunately, we could not find any suitable transformation that complied with unifor-
mity and orthogonality satisfactory. It remains unclear, whether such a transformation
can be realized with this scheme after all.
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Photonic Qutrits

For the realization of QKD with photons entangled in their orbital angular momentum,
various different experimental tools are needed. In the previous chapters, the physical
background of the experimental components and the setup itself have been discussed.
In the following we will introduce and explain the components employed for the cre-
ation of entangled photons, the basis transformation, the detection process and the key
generation scheme.

5.1. The Source

Certain crystals are non-linear media as electromagnetic fields Ei couple quadratically
(or in even higher orders) to the induced polarization field Pi in the crystals, i.e.

Pi = χ
(1)
ij Ei + χ

(2)
ijkEjEk + χ

(3)
ijkl . . . (5.1)

Such a quadratic dependency is sometimes called three-wave mixing, as an incident field
is coupled to two outgoing fields. If an intense laser shines on such a χ(2)-non-linear
crystal, an incident pump photon may decay into two outgoing photons. This effect is
called spontaneous parametric down-conversion (SPDC) and is used to produce pairs
of entangled photons. Here, the energy and the momentum of the pump photon p are
conserved and therefore two conditions have to hold:

~kp = ~ks + ~ki, (5.2)

ωp = ωs + ωi, (5.3)

where signal s and idler i denote the outgoing fields. ~k are the wavevectors inside the
crystal and ω the frequencies, i.e. the energies, of the photons. Note that ~ks, ~ki and
ωs, ωi are in principle arbitrary but have to satisfy the above conservation laws. A
BBO (β − BaB2O4) crystal, is an optical negative medium, i.e. no > ne, where no

is the refraction index for the ordinary field and ne the refraction index for the ex-
traordinary field. For the momentum conservation, two different phase matching condi-
tions exist, which are normally denoted as type-I and type-II. In type-I phase matching
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Figure 5.1.: Photograph of the experimental setup for the violation of a three-
dimensional Bell inequality and a qutrit quantum key distribution scheme. The source is
an Ar+ laser pumping a BBO crystal at a wavelength of 351 nm and an optical power
of approximately 95 mW. Two phase holograms in each down-conversion arm, mounted
on computer-controlled step motors, are used for transforming the incoming maximally
entangled qutrit state. Probabilistic mode analyzers, consisting of beam splitters, mode
selection holograms and single mode fibers, allow the differentiation between the three
orthogonal modes LG0,−1, LG0,0 and LG0,1. Finally, separate filter bridges, in which in-
terference filters are mounted, ensure that only the energy degenerate photons from the
parametric down-conversion are detected.
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5. Experimental Realization of Photonic Qutrits

Figure 5.3.: Type-I spontaneous parametric down-conversion. The photons have equal
polarization and for the energy degenerate case the down-converted photons are emitted
on opposite sides of a single cone. In this process the total orbital angular momentum
of the pump photon is conserved and therefore an entangled orbital angular momentum
state can be produced.

the signal and idler modes have the same polarization and photons with equal wave-
length are emitted on opposite sides of the same emission cone. Typically an ordi-
nary pump field couples to an extraordinary signal and idler field and viceversa, i.e.
~ko

p = ~ke
s + ~ke

i . Type-II phase matching couples an extraordinary pump mode to one or-

dinary and one extraordinary mode (~ke
p = ~ko

s + ~ke
i ). The down-converted photons not

only are in orthogonal polarization states, but also are emitted on two distinct cones.

Figure 5.2.: Photograph of
the type-I down-conversion
process, observed with a
CCD camera through a low-
pass filter with a cutoff at
800 nm.

It was experimentally [48, 23] shown and later theoreti-
cally [34] confirmed, that the orbital angular momentum
of photons is conserved in the process of parametric down-
conversion in the collinear regime. If the pump beam cre-
ating pairs of entangled photons has a Gaussian profile it
is thus possible to obtain the maximally entangled state

ψ = α|0〉|0〉+ β|1〉|2〉+ γ|2〉|1〉, (5.4)

with α = β = γ = 1√
3
. Here |1〉 is the LG0,1 mode, |2〉 the

LG0,−1 mode and |0〉 the Gaussian mode LG0,0.
For our source of entangled photons we pump a 1.5 mm
thick BBO with a vertically polarized Ar+ laser at a wave-
length of 351 nm (Coherent Innova 300) and an optical
output power of 95 mW. Before the laser actually hits the
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BBO, its spectrum is cleaned from fluorescent light of the gas discharge in the laser-tube
with a 60◦ prism. To increase the intensity of the pair production, the laser is then fo-
cused into the BBO crystal with a 600 mm UV-lens. In order to get an entangled state,
the photons of each pair produced have to be indistinguishable. Therefore, we use a BBO
with type-I phase matching as it produces polarization degenerated photons. Further-
more, the wavelengths of signal and idler have to be equal and hence ωp

2
= ωs + ωi. But

as mentioned above, in principle the photons can have any wavelength satisfying (5.3).
For this reason, we have to filter out all the pairs with unequal wavelengths and only
detect the ones with λ = 702 nm. This is done by introducing interference filters, which
will be explained in section 5.3.

5.2. Basis Transformation

Figure 5.4.: Intensity pro-
file of a 702 nm laser diode
after passing two consecu-
tive holograms, where one
makes a +1 transformation
and the other none. The im-
age was taken with a CCD
camera.

For the basis transformation and the mode detection (see
section 5.3) computer generated holograms are used. As
already discussed in chapter 2.3 such holograms can gen-
erate superpositions of LG modes. In order to make trans-
formations needed for the violation of inequality (2.25) it
has been experimentally demonstrated [68], that two con-
secutive holograms, one being a +1 and the other a −1, are
sufficient. The holograms we use were made by Prof. Bern-
hard Kley’s group at the Institut für angewandte Physik
der Friedrich-Schiller Universität in Jena, Germany [67].
They are transmissive phase gratings, with a single dis-
location each. The numerically calculated structure was
patterned via electron-beam lithography and etched onto
10×10×2 mm quartz plates. The final active holographic
size is 3×3 mm. The periodicity of the grating is 30 µm and
approximately 80 % of the intensity are diffracted into the
first diffraction order, due to the blazing of the grating. To
optimize the holograms for a wavelength of 702 nm, they
were coated with an anti-reflex layer for the near IR.
The generation of superpositions of various LG modes requires the possibility of hori-
zontally dislocating the holograms from the beam center of the down-converted photons.
Therefore they are individually mounted on step motors (Newport), which are connected
to motion controllers, that can be addressed via a LabView program. The exact scheme
will be explained in section 5.4.
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5.3. Detection

It is further necessary to distinguish the orbital angular momentum states of each in-
dividual photon. This is not as simple as it at first seems but with a hologram and a
single-mode fiber one can build probabilistic mode detectors. As fibers have small core
diameters, they only support certain wavelengths to propagate. The reason is, the higher
the wavelength λ, the bigger the spatial size of the mode. The core radius a of the single-
mode fibers (a fiber that only supports one spatial mode) we use can be calculated as
follows:

a = F · λcutoff

2π · NA
= 1.59 − 1.91 µm, (5.5)

where λcutoff = 500 − 600 nm is the cutoff wavelength, F = 2.405 is called the fiber
parameter and NA = 0.12 the numerical aperture of the fiber. In the case of LG modes,
only the Gaussian mode LG0,0 has substantial overlap with the fiber mode and therefore
is the only mode that propagates in the fiber — neither the LG0,1 nor the LG0,−1 do.
If a +1 hologram is placed in front of a single-mode fiber coupler, then only an LG0,−1

mode can be coupled into the fiber, as it is transformed into a Gaussian mode (see
Fig.5.5). The same can be done with a −1 hologram for detecting an LG0,1 mode. By
employing a 2 : 1 and a 1 : 1 beam splitter into the down-conversion arms (hence equally
splitting them into three parts) and using the above described mode detection scheme,
with a +1, a −1 and a hologram that does not do any transformation at all, one can
build a probabilistic mode analyzer for the LG0,−1, the LG0,0 and the LG0,1 mode, with
1
3

probability of success. This probabilistic nature of the analyzers is equivalent to a
reduced detection efficiency but otherwise leads to no additional security loopholes.

Figure 5.5.: Analyzing scheme of an LG0,1 mode. The incoming mode is transformed
into an LG0,0 and coupled into a single mode fiber. As only the Gaussian mode propagates
in the single mode fiber, this scheme serves as a mode analyzer — with a different setting
of the hologram the other modes can be unmistakeably discriminated. The dotted lines
show other diffraction orders, which have a low relative intensity due to the blazing of
the hologram.

To obtain the maximally entangled state (5.4), only photons from the energy degenerate
SPDC events have to be detected. Therefore, after the mode selection, we built filter
bridges that consist of two couplers and an interference filter. An interference filter
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5. Experimental Realization of Photonic Qutrits

relies on the interference of multiple reflected beams. Dielectric material, half a desired
wavelength thick, is sandwiched between two high reflectance layers with a different
refractive index, hence forming a cavity. An incident light beam is reflected several
times from the layers and if these reflections are in phase they constructively interfere
and pass through the reflection layer. If, on the other hand, they are out of phase, they
destructively interfere and the transmission is reduced to near zero. It is clear, that
beams with a wavelength twice the thickness of the dielectric material will be in phase,
while others will not. By putting several cavities on top of each other, the transmission
of unwanted wavelengths can be made arbitrarily small. Our interference filters have a
central wavelength of 702 nm and a bandwidth of ±1 nm.
Six silicon avalanche photo diodes are used as detectors, which are operated at a voltage
of 230 V. A single photon hitting the active area of the diode produces a current of
secondary electrons and is finally converted into a TTL pulse1. To keep the dark count
rate of the detector low, which is due to thermal electrons in the diode, it is cooled with
a Peltier element and kept at around −25 �.
As the detectors have different internal delays the outgoing TTL pulses are passed via
coaxial cables to a delay box, where they are balanced, and then finally counted in a
logic unit. To find the photons from one entangled pair, the respective arrival times
have to be compared and if they are within 3 ns, they are counted as coincidences and
hence as one pair. The logic unit for the violation of inequality (2.25) consists of such a
coincidence counter, where all six signals are counted and the nine possible coincidence
count rates are displayed on a computer.

5.4. Experimental QKD Setup

For the quantum key distribution it is necessary to find the settings of the transformation
holograms, for which inequality (2.25) is maximally violated. Only then can the two
observers A and B produce the secure key by independently and randomly switching
between their respective settings.
In order to find the optimal settings for the violation of the Bell inequality the two
holograms of A and the two holograms of B are iteratively displaced and the six single
and all nine coincidence count rates are recorded. This data is later analyzed to find
the settings with a maximal violation of the inequality. The Bell parameter S3 from the
measured count rates is calculated as

S3 =
4
∑

k=1

Ek, (5.6)

where the k = 1, . . . , 4 are the four different combinations of hologram settings and the

1A TTL pulse is a standard pulse, with a length of 150 ns and an amplitude of 5 V.
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Ek’s are obtained from explicitly writing out Eq. (2.25):

E1 =
N00 +N11 +N22 −N02 −N10 −N21

∑

ij Nij

,

E2 =
N10 +N21 +N02 −N00 −N11 −N22

∑

ij Nij

,

E3 =
N00 +N11 +N22 −N02 −N10 −N21

∑

ij Nij

,

E4 =
N00 +N11 +N22 −N20 −N01 −N12

∑

ij Nij

, (5.7)

with Nij (i, j = 0, 1, 2) being the coincidence count rates between observer A measuring
an LG0,i and observer B an LG0,j mode for the respective hologram settings k.
To switch between the hologram settings the step motors doing the displacements
are computer controlled via a GPIB interface. Therefore a LabView program used by
A. Vaziri in [67] was adapted and the measurements could be fully automatically run.
Typically such a measurement run lasted two days, depending on the number of steps
taken with each hologram.

Figure 5.6.: One of the
two logic units, built by dot-
fast consulting.

With the optimal settings a1, a2 and b1, b2 (note that in
our case these are combinations of hologram settings) of
the transformation holograms at hand, the QKD scheme
can be performed. The settings for the key production we
choose as a3 = b3 = 0.8 mm, which means that all four
holograms are set to 0.8 mm, as there almost no transfor-
mation of the incoming mode is performed and the beam
spot is completely on the holograms.
In contrast to the measurement of the Bell inequality, the
communication partners A and B now have to be abso-
lutely independent of each other. In principle A and B
could be hundreds of kilometers apart and are supposed
to be completely separated observers. Therefore we use two
distinct computers and logic units (Fig. 5.6). The only way
they identify their coincidences is with the help of sync sig-

nals — if they detect both, the signal from the other side and a local detection — one
entry, 0, 1 or 2 depending on the result of the local detectors, is stored locally in a
computer file (see Fig. 5.7). Furthermore, the current settings of the transformation
holograms are also written to the data file. The positions of the holograms are computer
controlled and the data from the logic units are passed to the computers via USB connec-
tions. A LabView program (see Appendices A.3 and A.4) automated the random choice
of settings, the associated motor alignments, the synchronization of the measurements
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5. Experimental Realization of Photonic Qutrits
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Figure 5.7.: Illustration of the experimental setup for the QKD with qutrits. The detec-
tion signals from the entangled photons are processed in two separate logic units, where
the coincidences are only registered via cross-sync signals. Depending on the local mea-
surement result, a value being either 0, 1 or 2 is passed to the logics first-in first-out
buffer (FIFO) and read out by a computer.

and the readout of the logics FIFO’s2. The program also synchronized the beginning of
writing the measured data to a file.
After a few runs of the quantum key distribution procedure, the two partners A and B
have to extract their key and check for the violation of the Bell inequality. A pictogram in
Fig. 5.8 shows the scheme of the two parties to retrieve the keys and verify the violation
of the inequality.

2FIFO is the abbreviation for first in first out and is a storage buffer of the detection events for the
logical unit. If needed, this buffer can be read out by a computer.
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5. Experimental Realization of Photonic Qutrits

Figure 5.8.: Scheme of the procedure of A and B extracting a secure key. Both par-
ties write their measurement results from the quantum key distribution to files on their
computer. Then observer B publicly announces his list of measurement positions, and
A compares them to hers. She will distinguish between suitable combinations for the test
of the Bell inequality, positions with perfect correlations for the key and the completely
incompatible cases and also announce the results publicly. This basis reconciliation can
be performed over any classical public channel. Both know now from which data to ex-
tract their key and additionally B broadcasts the data, which is intended for the Bell
inequality, on a public channel, and A computes the value of the Bell parameter S3.
If the inequality is violated she will announce, that their quantum key distribution was
successful.
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6. Experimental Results

6.1. Violation of the Bell inequality

Figure 6.1.: All violations of the three-dimensional Bell inequality (2.25) for every 7th

possible combination. The plot shows a total of 382 415 S3 values greater than 2, against
the maximal variation of the sum of the single counts compared to their mean value.

The experimentally produced state for the violation of the Bell inequality in order to find
the settings for the QKD was almost maximally entangled, with coefficients in (2.21)
α = 0.642, β = 0.546 and γ = 0.539 and the phases ϕ0 = ϕ1 = ϕ2 = 0. To find the
maximal violation each of the transformation holograms was displaced by ±1.2 mm from
the beam center in 16 equal steps. For every of the 83 521 (174) combinations of settings
the count rates were integrated over 5 s and written to a file. After analyzing the data a
maximal value for S3 of 2.825± 0.052 was found, which is a violation by approximately
16 standard deviations. The errors were calculated assuming a Poissonian distribution
of the count rates and therefore taking their square root as the errors. The respective
settings in mm from the beam center were 1.05, 0.75 (hologram 1), 1.2, 0.3 (hologram 2)
for A and 0.45, 1.05 (hologram 3), 0.15, 0.0 (hologram 4) for B’s side. The typical single
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S3 σ ∆SC SC1 SC2 SC3 SC4 SC5 SC6

88 719 68 137 59 133 112 966 59 580 70 612
2.825 0.052 22.8 % 68 265 41 609 32 801 112 706 59 797 70 797

66 810 48 566 35 132 63 965 53 818 139 382
88 912 77 645 59 007 64 557 54 902 140 040

54 245 119 508 43 071 60 003 131 572 76 864
2.586 0.056 0.5 % 67 994 56 311 90 113 60 229 131 729 76 899

66 412 56 716 90 243 101 692 83 682 84 070
51 979 118 738 43 589 101 343 84 168 83 625

68 277 85 744 103 933 54 413 147 584 77 146
2.418 0.049 8.9 % 43 420 104 149 72 637 54 295 148 144 76 990

41 397 108 276 72 572 106 906 82 317 98 428
66 511 90 921 102 713 105 133 82 942 97 993

S3 ∆C CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 H1 [mm] H2 [mm] H3 [mm] H4 [mm]

520 51 149 63 415 23 121 114 793 +1.05 +1.2 +0.75 +0.3
2.825 120.5 % 7 249 64 25 13 82 519 54 84 +1.05 +1.2 +1.05 ±0.0

122 129 87 18 178 74 108 37 2067 +0.75 +0.3 +1.05 ±0.0
388 30 228 51 789 421 16 49 2255 +0.75 +0.3 +0.75 +0.3

286 6 28 12 1362 72 26 236 230 −0.15 −0.6 +0.15 −0.3
2.586 52.7 % 34 780 83 12 78 42 114 197 42 −0.15 −0.6 −1.05 −0.6

589 75 146 40 288 32 14 101 87 −0.6 −0.75 −1.05 −0.6
289 64 79 117 560 81 18 20 338 −0.6 −0.75 +0.15 −0.3

33 1122 57 0 302 18 231 351 90 ±0.0 −0.75 +0.75 +0.6
2.418 8.3 % 85 438 132 15 1112 70 132 229 56 ±0.0 −0.75 −0.15 −0.45

774 18 22 76 679 107 6 24 382 −0.6 −0.6 −0.15 −0.45
892 9 81 28 648 5 4 72 389 −0.6 −0.6 +0.75 +0.6

Table 6.1.: Experimental data for three exemplary Bell parameters S3, violating the Bell inequality by several standard
deviations, and the respective variation of the single and coincidence count rates ∆SC and ∆C, respectively. The
individual single counts per 5 s SCi for all six detectors are shown and in addition the nine coincidence count rates
CCj. The first S3 value shows a large variation of the sum of SCi, ∆SC, and of the sum of CCj, ∆C, whereas the
third is the lowest in both jointly. The Bell parameters are computed from the CCj’s according to formula (5.6). Finally,
the positions of the transformation holograms for the respective values of S3, in mm from the beam center, are shown.
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6. Experimental Results

Figure 6.2.: These plots show the occurrence of the transformation hologram positions
for different values of S3. For both observers A and B, a certain convergence of the
positions to small areas for higher S3 values can be observed. The colors are a guide for
the eye only.

count rates were around 19 000 s−1 and the coincidences of the perfect correlations about
250 s−1 (see Fig. 6.1 and Table 6.1), with a background of about 7.4 %, i.e. the total
coincidence counts in the unwanted channels. In addition we have checked the variation
of the sum of the single and coincidence count rates for the different hologram positions,
which should ideally be zero. Therefore, the sum of the counts for the four different
settings was taken and the minimal was subtracted from the maximal value and divided
by the mean. For the settings of maximal violation they were approximately 22.8 % and
120.5 %, respectively. In terms of these variances the settings for the maximal violation
were not optimal, which might be due to a relatively high background of modes with a
non-zero index p and imperfections in the alignment of the transformation holograms. In
Table 6.1 some violations of (2.25) with a smaller variance of the single and coincidence
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6. Experimental Results

count rates and the corresponding hologram positions are shown. Figure 6.1 is a plot of
all evaluated Bell parameters S3 > 2, with their respective single count variances. As
the data file was too large to make every possible combination of S3, only every seventh
combination was calculated. Nevertheless a total of 382 415 violations of the inequality
were found. At the moment a calculation of all possible S3 values is running on the
University of Vienna’s Schrödinger cluster, which is a computer cluster with 240 Intel
Pentium 840 ’Prescott’ 64 Bit CPU’s. With a single Intel P4 processor it would take
several months to finish the calculations. The program for analyzing the violation was
written in Matlab and can be found in Appendix A.2.

Figure 6.3.: Typical count rates per 10 s for the experimental violation of the Bell
inequality and the experimental qutrit quantum key distribution. The left column shows
the coincidences, where the three perfect correlated count rates are easily distinguished
from the rest. In the right column are the single counts of the six detectors.

6.2. Key Generation

In the first realization of our qutrit QKD scheme each measurement lasted 1 s and
the step motors needed an additional 5 s to align. After approximately 15 minutes of
key distribution, the data was analyzed according to the pictogram shown in Fig. 5.8.
The analysis of the recorded data yielded a Bell parameter S3 = 2.688 ± 0.171, which
represents a clear violation of local realism and ascertained the successful completion of
the protocol. We extracted keys of a length of 150 trits for A and B separately (the keys
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6. Experimental Results

Figure 6.4.: On the left are the sifted keys obtained by observers A and B via three-
dimensional quantum key distribution. The bold (colored) numbers are the correct trits
while the plain numbers are errors. The ratio of correct key to total key is 90.7 %, i.e.
from a total key of 150 trits, 136 entries were the same for A and B. The security of this
key is ascertained by the violation of the Bell inequality (2.25), with S3 = 2.688± 0.171.
On the right are the keys after error correction, which is done by checking the parity of
blocks of three trits. Due to the correction, the keys are reduced to a length of 72 trits.

are shown in Fig. 6.4). Out of the 150 trits 14 were errors, which corresponds to a QTER
(Quantum Trit Error Rate) of 9.3 %. This demonstrates the successful key distribution,
since the error rate is well below the maximal allowed noise ratio and additionally Bell’s
inequality (2.25) is violated.
Although we generated two keys, with a small QTER, we encountered several problems
with our experimental setup. The most difficult to overcome was the synchronization
of the measurements of observers A and B. Despite using the same software on both
computers, we had to deal with a chitter of a few FIFO entries. A further problem was
that apparently one of the two logics dropped FIFO entries from time to time, which
resulted in displacements of the detection events. It was impossible to correct for both
problems and we only managed to reduce them to a minimum with a tricky adaption
of the software. If one of the problems occurred, it inevitably induced errors and thus
artificially worsened our QKD protocol. To obtain the final keys with a relatively small
error rate, various attempts of QKD had to be made. For future applications, the logics
could be replaced with time tagging cards, which give each measurement result a unique
time stamp, and hence the above mentioned problems could be completely eliminated.
In order to illustrate the quality of our generated keys and a possible application of QKD,
a small message will be encoded with the key produced on A’s side, and subsequently
decoded with B’s key. Therefore, we encode the alphabet into strings of three trits using
the conversion table 6.2.
A text message can then be encoded into a string of 0, 1 and 2. This row of numbers is
encrypted by taking the key of observer A and adding to each trit of the message a trit
of the key, modulo 3. The encrypted text is now completely random to anyone trying to
read it, like an eavesdropper E. Only observer B can reverse the encryption using his
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6. Experimental Results

Character Code Character Code Character Code

A 000 J 100 S 200
B 001 K 101 T 201
C 002 L 102 U 202
D 010 M 110 V 210
E 011 N 111 W 211
F 012 O 112 X 212
G 020 P 120 Y 220
H 021 Q 121 Z 221
I 022 R 122 222

Table 6.2.: To each letter in the alphabet we assign a unique string of three trits.
Interestingly three trits suffice to represent all characters of the Latin alphabet plus one
additional character.

key and obtains, ideally, the exact message that A originally wrote. This procedure is
shown in Table 6.3 for a short message.

Original Text T H E R E S U L T I S F O R T Y T W O

Original Code 201 021 011 222 122 011 200 202 102 201 222 022 200 222 012 112 122 201 220 222 201 211 112
Key A 022 001 122 110 002 100 222 201 212 222 122 212 001 221 212 002 201 121 210 212 222 122 222
Cipher 220 022 100 002 121 111 122 100 011 120 011 201 201 110 221 111 020 022 100 101 120 000 001

E’s Text Y I J C Q N R J E P E T T M Z N G I J K P A B

Cipher 220 022 100 002 121 111 122 100 011 120 011 201 201 110 221 111 020 022 100 101 120 000 001
Key B 022 001 122 110 002 100 222 201 212 222 122 212 001 221 212 002 201 121 210 212 222 122 222

Decrypted Code 201 021 011 222 122 011 200 202 102 201 222 022 200 222 012 112 122 201 220 222 201 211 112
Decrypted Text T H E R E S U L T I S F O R T Y T W O

Table 6.3.: Encryption and decryption of a short, important message sent between the
two partners A and B using the error corrected key obtained via the three-dimensional
quantum key distribution. An eavesdropper trying to intercept the message only gets
random characters and hence cannot obtain any information on the original text, whereas
observer B uses his key to decipher the original message.
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7. Conclusion and Outlook

In this thesis we described the first experimental qutrit quantum key distribution.
Two completely independent parties A and B produce keys, while violating a three-
dimensional Bell inequality by more than 4 standard deviations. The sifted keys had an
error rate of approximately 10 %. The effective key rate we achieved is rather low, but
this will change in the near future with the implementation of a different basis trans-
formation such as by a spatial light modulator, which allows transformation rates of
a few Hz (for an extensive introduction to spatial light modulators and their possible
application in OAM based quantum key distribution see [62]). In addition, with a biased
choice of the positions of the transformation holograms, the key production rate could
be increased.
A further challenge is the distortion-free transmission of OAM encoded photons over
large distances. The possibilities of free-space and fiber links are still under investiga-
tion, since atmospheric turbulences and mode crosstalk in fibers have to be overcome.
Gibson et al. already demonstrated a free-space link of photons with OAM over a distance
of 15 m [39]. Additionally, encoding higher dimensions into other degrees of freedom,
such as time bins [64], might also be considered. For cryptographic schemes based on
single qutrits, similar to the BB84 scheme, transformations between mutually unbiased
bases (MUBs) are required. Further investigations of such transformations with our holo-
graphic scheme are under investigation and ultimately with an interferometric approach
arbitrary SU(3) transformations could be possible to achieve. In contrast to the polar-
ization degree of freedom, in principle there is no limitation on the dimension of the two
photon entanglement and therefore an extension of the qutrit to a more general qudit
case also seems feasible.
The work presented in this thesis is intended to be published in a scientific journal.
At the moment it is still in the internal review process but will be submitted soon.
Additionally, a second publication on non-local realistic (in the sense EPR discussed
local realism) theories is about to be submitted to a journal. In this paper a bound on a
certain class of non-local hidden-variable theories is derived and shown to be at variance
with quantum theory and experimental evidence.
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A. Computer Programs

A.1. Numerical Simulations with three Holograms

Overlap integral definition / numeric definition

atanspec x_, y_ If x 0.0 && y 0.0, 0, ArcTan x, y zur Vermeidung von Warnmeldungen

overlap li_, lo_, m_, x0_, y0_, x_, y_

2

Abs li Abs lo
2 x2 y2

Abs li Abs lo

2 2 x2 y2 li lo atanspec x,y m atanspec x x0,y y0

overlapnum

Compile li, _Integer , lo, _Integer , m, _Integer , x0, _Real , y0, _Real , x, _Real , y, _Real ,

2

Abs li Abs lo
If li lo 0, 1, 2 x2 y2

Abs li Abs lo

2 2 x2 y2 li lo atanspec x,y m atanspec x x0,y y0

Zusätzliche Definitionen

Off NIntegrate::slwcon

overlapint li_, lo_, m_, x0_, y0_ :

NIntegrate overlapnum li, lo, m, x0, y0, x, y , x, 3, 3 , y, 3, 3 , AccuracyGoal 3, PrecisionGoal 3
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A. Computer Programs

Matrixkonstruktion - Versuch einer MUB Trafo

Berechnung der Matrixelemente der Multiplikation der zwei HologrammMatrizen und 
Ausgabe von U und U'U=1 Überprüfung. Weiters werden die momentanen Positionen 
auch ins File geschrieben.

Berechnung und Ausgabe von U f2 f1 mat1 ,

U' U mat2 und der Orthogonalität der einzelnen Basisvektoren mat3

mat1 , , , , , , , , , iAl, jAl, kAl ;

mat2 Abs 1 1 1 , Abs 1 1 1 ,

Abs 1 1 1 , Abs 1 1 1 , Abs 1 1 1 , Abs 1 1 1 ,

Abs 1 1 1 , Abs 1 1 1 , Abs 1 1 1 , iAl, jAl, kAl ;

mat3 Abs 1 1 1 , Abs 1 1 1 , Abs 1 1 1 , iAl, jAl, kAl ;

Berechnung aller Koeffizienten und ablegen selbiger in Listen

z 10 10 Grenze für Verschiebung der Hologramme

zA 2 z 1 ^2 Anzahl der Iterationen in den For Schleifen 1, weil Liste bei 1 beginnt

a Flatten Table overlapint 1, 1, 1, x1 10 , y1 10 , x1, z, z , y1, z, z ;

b Flatten Table overlapint 1, 0, 1, x1 10 , y1 10 , x1, z, z , y1, z, z ;

c Flatten Table overlapint 1, 1, 1, x1 10 , y1 10 , x1, z, z , y1, z, z ;

d Flatten Table overlapint 0, 0, 1, x1 10 , y1 10 , x1, z, z , y1, z, z ;

e Flatten Table overlapint 0, 1, 1, x1 10 , y1 10 , x1, z, z , y1, z, z ;

f Flatten Table overlapint 0, 2, 1, x1 10 , y1 10 , x1, z, z , y1, z, z ;

g Flatten Table overlapint 1, 1, 1, x1 10 , y1 10 , x1, z, z , y1, z, z ;

h Flatten Table overlapint 1, 2, 1, x1 10 , y1 10 , x1, z, z , y1, z, z ;

i Flatten Table overlapint 1, 3, 2, x2 10 , y2 10 , x2, z, z , y2, z, z ;

j Flatten Table overlapint 1, 2, 2, x2 10 , y2 10 , x2, z, z , y2, z, z ;

k Flatten Table overlapint 1, 1, 2, x2 10 , y2 10 , x2, z, z , y2, z, z ;

l Flatten Table overlapint 0, 2, 2, x2 10 , y2 10 , x2, z, z , y2, z, z ;

u Flatten Table overlapint 0, 1, 2, x2 10 , y2 10 , x2, z, z , y2, z, z ;

n Flatten Table overlapint 0, 0, 2, x2 10 , y2 10 , x2, z, z , y2, z, z ;

o Flatten Table overlapint 1, 1, 2, x2 10 , y2 10 , x2, z, z , y2, z, z ;

p Flatten Table overlapint 1, 0, 2, x2 10 , y2 10 , x2, z, z , y2, z, z ;

q Flatten Table overlapint 1, 1, 2, x2 10 , y2 10 , x2, z, z , y2, z, z ;

r Flatten Table overlapint 2, 0, 2, x2 10 , y2 10 , x2, z, z , y2, z, z ;

s Flatten Table overlapint 2, 1, 2, x2 10 , y2 10 , x2, z, z , y2, z, z ;

t Flatten Table overlapint 3, 1, 1, x3 10 , y3 10 , x3, z, z , y3, z, z ;

v Flatten Table overlapint 2, 1, 1, x3 10 , y3 10 , x3, z, z , y3, z, z ;

w Flatten Table overlapint 2, 0, 1, x3 10 , y3 10 , x3, z, z , y3, z, z ;

a1 Flatten Table overlapint 1, 1, 1, x3 10 , y3 10 , x3, z, z , y3, z, z ;

b1 Flatten Table overlapint 1, 0, 1, x3 10 , y3 10 , x3, z, z , y3, z, z ;

c1 Flatten Table overlapint 1, 1, 1, x3 10 , y3 10 , x3, z, z , y3, z, z ;

d1 Flatten Table overlapint 0, 0, 1, x3 10 , y3 10 , x3, z, z , y3, z, z ;

e1 Flatten Table overlapint 0, 1, 1, x3 10 , y3 10 , x3, z, z , y3, z, z ;

g1 Flatten Table overlapint 1, 1, 1, x3 10 , y3 10 , x3, z, z , y3, z, z ;

Matrixelemente der 3 x3 Matrix f3 f2 f1 und c.c.

Flatten Table a iA i jA t kA v kA a iA j jA b iA l jA

a1 kA a iA k jA b iA u jA o jA c iA , iA, 1, zA, 1 , jA, 1, zA, 1 , kA, 1, zA, 1 ;

1 Conjugate ;

Flatten Table v kA d iA l jA a1 kA d iA u jA e iA o jA ,

iA, 1, zA, 1 , jA, 1, zA, 1 , kA, 1, zA, 1 ;

1 Conjugate ;

Flatten Table a1 kA g iA o jA , iA, 1, zA, 1 , jA, 1, zA, 1 , kA, 1, zA, 1 ;

1 Conjugate ;

Flatten

Table w kA a iA j jA b iA l jA b1 kA a iA k jA b iA u jA o jA c iA

d1 kA b iA n jA c iA p jA , iA, 1, zA, 1 , jA, 1, zA, 1 , kA, 1, zA, 1 ;

1 Conjugate ;

Flatten Table w kA d iA l jA b1 kA d iA u jA e iA o jA

d1 kA d iA n jA e iA p jA f iA r jA , iA, 1, zA, 1 , jA, 1, zA, 1 , kA, 1, zA, 1 ;

1 Conjugate ;

Flatten Table b1 kA g iA o jA d1 kA g iA p jA h iA r jA ,

iA, 1, zA, 1 , jA, 1, zA, 1 , kA, 1, zA, 1 ;

1 Conjugate ;
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A. Computer Programs

Flatten

Table c1 kA a iA k jA b iA u jA o jA c iA e1 kA b iA n jA c iA p jA

g1 kA c iA q jA , iA, 1, zA, 1 , jA, 1, zA, 1 , kA, 1, zA, 1 ;

1 Conjugate ;

Flatten

Table c1 kA d iA u jA e iA o jA e1 kA d iA n jA e iA p jA f iA r jA

g1 kA e iA q jA f iA s jA , iA, 1, zA, 1 , jA, 1, zA, 1 , kA, 1, zA, 1 ;

1 Conjugate ;

Flatten Table c1 kA g iA o jA e1 kA g iA p jA h iA r jA

g1 kA g iA q jA h iA s jA , iA, 1, zA, 1 , jA, 1, zA, 1 , kA, 1, zA, 1 ;

1 Conjugate ;

Ausgabe der Zähler in Listen

For 1, zA, 1, Table , , 1, zA^2, 1 ;

iAl Flatten Array , zA ;

For 1, zA, 1, Table , , 1, zA, 1 ;

For 1, zA, 1, Flatten Array , zA ;

jAl Flatten Array , zA ;

For 1, zA, 1, Table , , 1, zA, 1 ;

For 1, zA, 1, Flatten Array , zA ;

kAl Flatten Array , zA ;

Export "h:\\matrix.mat", mat1

Export "h:\\unitarity.mat", mat2

Export "h:\\orthogonality.mat", mat3
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A. Computer Programs

A.2. Calculation of S3

%check for Violation of 3-dimensional Bell inequality & check the variances

%of single and coincidence count rates

clear all

tic

count=0;

zeit=0;

load runNEU_1.dat -ascii

Data1=runNEU_1;

base2=17^2;

base3=17^3;

prozent=0;

prozent_vorher=0;

prozent_scale=100/(length(Data1)*length(Data1));

% Schreiben einer Tabelle mit allen Werten für die Berechnung des S Wertes (xx1(a) = xx3(a))

for a=1:1:length(Data1)

xx1(a) = (Data1(a,5)+Data1(a,13)+Data1(a,9)-Data1(a,6)-Data1(a,11)-Data1(a,10))/sum(Data1(a,5:13));

xx2(a) = (Data1(a,11)+Data1(a,10)+Data1(a,6)-Data1(a,5)-Data1(a,13)-Data1(a,9))/sum(Data1(a,5:13));

xx4(a) = (Data1(a,5)+Data1(a,13)+Data1(a,9)-Data1(a,8)-Data1(a,7)-Data1(a,12))/sum(Data1(a,5:13));

end

% Tabelle mit Fehlerfortpflanzung

for b=1:1:length(Data1)

sx1(b) = (Data1(b,5)+Data1(b,13)+Data1(b,9)+Data1(b,6)+Data1(b,11)...

+Data1(b,10))/((sum(Data1(b,5:13)))^2);

sx2(b) = ((Data1(b,5)+Data1(b,13)+Data1(b,9)-Data1(b,6)-Data1(b,11)...

-Data1(b,10))^2)*(sum(Data1(b,5:13)))/(sum(Data1(b,5:13))^4);

sx3(b) = (Data1(b,11)+Data1(b,10)+Data1(b,6)+Data1(b,5)+Data1(b,13)...

+Data1(b,9))/((sum(Data1(b,5:13)))^2);

sx4(b) = ((Data1(b,11)+Data1(b,10)+Data1(b,6)-Data1(b,5)-Data1(b,13)...

-Data1(b,9))^2)*(sum(Data1(b,5:13)))/(sum(Data1(b,5:13))^4);

sx5(b) = (Data1(b,5)+Data1(b,13)+Data1(b,9)+Data1(b,6)+Data1(b,11)...

+Data1(b,10))/((sum(Data1(b,5:13)))^2);

sx6(b) = ((Data1(b,5)+Data1(b,13)+Data1(b,9)-Data1(b,6)-Data1(b,11)...

-Data1(b,10))^2)*(sum(Data1(b,5:13)))/(sum(Data1(b,5:13))^4);

sx7(b) = (Data1(b,5)+Data1(b,13)+Data1(b,9)+Data1(b,8)+Data1(b,7)...

+Data1(b,12))/((sum(Data1(b,5:13)))^2);

sx8(b) = ((Data1(b,5)+Data1(b,13)+Data1(b,9)-Data1(b,8)-Data1(b,7)...

-Data1(b,12))^2)*(sum(Data1(b,5:13)))/(sum(Data1(b,5:13))^4);

end

for ii=0:7:(length(Data1)-1)

for jj=ii+1:7:(length(Data1)-1)

zeit=zeit+1;

s1=mod(ii,17); s2=floor(ii/17);

t1=mod(s2,17); t2=floor(s2/17);

u1=mod(t2,17); u2=floor(t2/17);

v1=mod(u2,17); v2=floor(u2/17);

w1=mod(jj,17); w2=floor(jj/17);

x1=mod(w2,17); x2=floor(w2/17);

y1=mod(x2,17); y2=floor(x2/17);

z1=mod(y2,17); z2=floor(y2/17);
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k=v1*base3+u1*base2+x1*17+w1+1;

l=z1*base3+y1*base2+t1*17+s1+1;

i=ii+1;

j=jj+1;

%Berechnung des S Wertes

x = xx1(i)+xx2(k)+xx1(j)+xx4(l);

%Berechnung der Varianz der Single & CC counts

singles=[sum(Data1(i,16:21)) sum(Data1(j,16:21)) sum(Data1(k,16:21)) sum(Data1(l,16:21))];

vars=(max(singles)-min(singles))/mean(singles);

cc=[sum(Data1(i,5:13)) sum(Data1(j,5:13)) sum(Data1(k,5:13)) sum(Data1(l,5:13))];

varc=(max(cc)-min(cc))/mean(cc);

if ((x>2)&(vars<0.1)&(varc<0.1))

prozent=ii*jj*prozent_scale;

if prozent-prozent_vorher > 0.01

prozent

prozent_vorher=prozent;

end

%Fehlerfortpflanzung

sigmax = sqrt(sx1(i)+sx2(i)+sx3(k)+sx4(k)+sx5(j)+sx6(j)+sx7(l)+sx8(l));

count=count+1;

%Ausgabe

Bell3D(count,:)=[i j k l x sigmax vars varc];

end

clear x

end

end

save Bell3D_withCC_13.dat -ascii Bell3D

semilogy (Bell3D(:,5),Bell3D(:,7),’b.’)

semilogy (Bell3D(:,5),Bell3D(:,8),’r.’)

toc
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A.3. LabView Program for Synchronized Measurements
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A. Computer Programs

A.4. LabView Program for Data Acquisition
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